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ABSTRACT 

Let A,B,  S be finite subsets of an abelian group G. Suppose that the 
restricted sumset 

C= {aTb:aE A, bC B, and a - b ~  S} 

is nonempty and some c E C can be written as a + b with a E A and 
b C B in at most m ways. We show that if G is torsion-free or elementary 
abelian, then ICI /> IAI + IBI - ISI - m. We also prove that ICI /> 
]A I + ]B I - 21S ] - m if the torsion subgroup of G is cyclic. In the case 
S = {0} this provides an advance on a conjecture of Lev. 

1. I n t r o d u c t i o n  

Let  A and  B be  f in i te  n o n e m p t y  subse t s  of  an  ( a d d i t i v e l y  w r i t t e n )  a b e l i a n  g r o u p  

G. T h e  s u m s e t  of  A and  B is def ined  by  

A +  B = (a +b: a C A a n d  b e B} .  

T h e  C a u c h y - D a v e n p o r t  t h e o r e m  (cf. [N, pp .  43-48]) ,  a bas ic  r e su l t  in a d d i t i v e  

c o m b i n a t o r i a l  n u m b e r  theory ,  s t a t e s  t h a t  

I A + B I /> r a in (p ,  IAI + IBI - 1} 
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if G = Z/pZ with p prime. Another theorem due to Kemperman and Scherk 
(cf. [Sc], [Ke] and [L2]) asserts that  

(1.1) IA + B I / >  IA[ + IBI - m i n  ~A,S(C), 
cEA+B 

where 

(1.2) VA,S(C) = ]{(a, b) e A x B: a + b = c}l; 

in particular, we have [A + B[ >/IAI + [B[ - 1 if some c E A + B can be uniquely 

written as a + b with a C A and b E B. 

Now we define the restricted sumset 

(1.3) A 4 B = { a + b : a E A ,  b E B ,  and a C b } .  

In 1964, Erdhs and Heilbronn [EH] conjectured that  if G = Z/pZ with p prime, 

then 

IA $ A I >t min{p, 2]A] - 3}. 

This is much more difficult than the Cauchy-Davenport theorem concerning 

unrestricted sumsets. It had been open for thirty years until Dias da Silva 

and Hamidoune [DH] confirmed it in 1994 using representations of symmetric 

groups. Later Alon, Nathanson and Ruzsa [ANR1, ANR2] developed a powerful 

polynomial method to give a simpler proof of the Erdhs-Heilbronn conjecture 

(see also [A2]). They showed that  if G -- Z/pZ with p prime then 

I A $ B I ~> min{p, IAI + IBI - 2 - 5}, 

where 5 is 1 or 0 according to whether ]A] --- ]B I or not. The reader may 

consult [HS], [K1], [K2], [L1], [LS] and [SY] for various extensions of the Erdhs- 

Heilbronn conjecture. 

Motivated by the Kemperman-Scherk theorem and the Erdhs-Heilbronn 

conjecture, Lev [L2] proposed the following interesting conjecture. 

CONJECTURE 1.1 (Lev): Let G be an abelian group, and let A and B be finite 

nonempty subsets of G. Then we have 

(1.4) I A 4 B] /> IAI + IBI - 2 - min 1]A,B(C ). 
cEA+B 

This conjecture is known to be true for torsion-free abelian groups and ele- 

mentary abelian 2-groups. It also holds when IGI is prime, or G is cyclic and 

IG] ~ 25. (Cf. [L2].) 

Now we state our main results. 
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THEOREM 1.1: Let A and  B be finite noaempty subsets o[ a field F. Let 

P(x,  y) E Fix,  y] and 

(1.5) C = {a4-  b: a E A, b E B,  and P(a,b) 7 ~ 0}. 

If  C is nonempty, then 

(1.6) [C[ >/[A] 4- [B] - d e g P  - min~A,B(C). 
cEC 

Remark 1.1: W h e n  P(x ,y )  = 1, (1.6) becomes (1.1). 

Notice the  difference between the min ima  in (1.4) and (1.6): as C C A 4- B 

we have minceA+S UA,B(C) ~ mincec  UA,B(C). 

THEOREM 1.2: Let A and B be finite nonempty subsets of an abelian group G 

whose torsion subgroup 

Wor(a) = {g �9 G: g a finite order} 

is cyclic. For i = 1 , . . . ,  1 let mi and ni be nonnegative integers and let di �9 G. 

Suppose that 

(1.7) C = {a 4- b: a �9 A, b �9 B, and mia - n~b ~ di for all i = 1 , . . . ,  l} 

is nonempty. Then 

l 
(1.8) [C[ ~> [A[ + ] B [ -  E ( m i  + Hi) -min~'A,S(C). 

cEc i=l 

Remark 1.2: W h e n  A and B are finite subsets  of Z, the  restr ic ted sumset  in 

(1.7) was first s tudied by Sun [Sul]. 

From Theorems  1.1 and 1.2 we deduce the following result  on difference- 

restr icted sumsets .  

THEOREM 1.3: Let G be an abelian group, and let A, B, S be finite nonempty 

subsets of G with 

(1.9) C =  {a 4- b: a E A, bE B, and a - b  r S} 7~ r 

(i) If G is torsion-[tee or elementary abelian, then 

(1.10) [C[/> [A[ + IS[ - IS I - mintJA,s(c ). 
cEC 
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(ii) IfTor(G) is cyclic, then 

(1.11) ICI/> IAI + IBI - 2IS I - minvA , ( c ) .  
c E C  ' 

Proof." Withou t  loss of  general i ty  we can assume tha t  G is genera ted by the  

finite set A U B U S. 

I f  G ~ Z n, then  we can s imply view G as the  ring of algebraic integers in an 

algebraic number  field g wi th  [ g  : Q] -- n. If  G -~ (Z /pZ)  n where p is a prime,  

then  G is isomorphic  to  the  addit ive group of the  finite field wi th  pn elements.  

Thus  pa r t  (i) follows f rom T h e o r e m  1.1 in the  case P(x ,y )  = 1-Ises(Z - y - s). 

Let  d l , . . .  ,dz be  all the  dist inct  e lements  of S. Applying Theo rem 1.2 wi th  

mi -- ni -- 1 for all i -- 1 , . . . ,  l we immedia te ly  get the  second part .  I 

Remark 1.3: I t  is interest ing to  compare  Theorem 1.3 in the  case S = {0} wi th  

Conjec ture  1.1. 

Concerning the  set C given by (1.9), there  are some known results of 

different types.  W h e n  A , B , S  are finite nonempty  subsets  of a field 

whose character is t ic  is an odd pr ime p, the  authors  [PS] proved tha t  IC[ I.  

min{P, ig[ § [B[ - IS[ - q - 1}, where q is the  largest  power of p not 

exceeding [S[. By  modifying Ks proof  of [K1, Theo rem 3], we can 

show tha t  if q > 1 is a power of a pr ime p, and A , B , S  are subsets  of 

Z/qZ with  min{lA[, [B[} > IS[, then  [C[ >~ min{p, IA[ + [B I - 2[S[ - 1}. 

We will give a key l e m m a  in the  next  section and prove Theorems  1.1 and 1.2 

in Section 3. Our  proofs use a version of the  polynomial  method .  

2. S o m e  p r e p a r a t i o n s  

Our  basic tool is as follows. 

COMBINATORIAL NULLSTELLENSATZ ([A1, T h e o r e m  1.1]): Let A 1 , . . . , A n  

be finite nonempty subsets of a field F, and set gi(x) = I J a e A , ( X  - a) for 

i = 1 , . . .  ,n. Then f ( X l , . . . , X n )  E F[x l , . . . , xn ]  vanishes over the Cartesian 

product A1 x . . .  x An if  and only i f  it can be written in the form 

n 

f ( x t , . . . ,  : xn) 
i ~ 1  

where h i ( x l , . . .  ,xn) E F[Xl , . . .  ,Xn] and degh i  ~ d e g f  - deggi .  

W i t h  help of the  Combina tor ia l  Nullstellensatz,  we provide a l emma for our 

purposes.  
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LEMMA 2.1: 

(2.1) 
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Let A and B be finite nonempty subsets of a field F, and write 

~i = [{(a,b) �9 A x B: a +  Aib = ~}1 

for i = 1 , . . . ,  k where Ai �9 F \ {0} and #i �9 F.  Let P(x,  y) �9 F[x, y]. Suppose 

that for any i = 1 , . . . , k  there are a �9 A and b �9 B with P(a,b)  # 0 and 

a + Aib = #i, and that for each (a, b) �9 A x B with P(a,  b) r 0 there is a unique 

i �9 {1 , . . . ,  k} with a + Aib = #i. Then we have 

(2.2) 

Proof: Clearly 

kq- rain{L,1,... ,~k} ~ IAI + IBI- degP. 

k 

f ( x , y )  := P(x,y)  I ] ( x  + ;X y - 
j = l  

vanishes over d x B. Set gA(X) = I-[aEA(X -- a) and gB(Y) = [IbeB(Y -- b). By 

the Combinatorial Nullstellensatz, there are hA(x, y), h s ( x ,  y) �9 F[x, y] such 

that  

f ( x ,  y) = gA(X)hA(x, y) + gB(y)hs (x ,  y) 

and 

max{deg gA -t- deg hA, deg gB -t- deg hB } ~< deg f .  

Fix 1 ~< i ~< k. Write hB(x, y) = ~s,t>~o CstxSy t where cst E F. Then 

hs (x ,  y) = E cst((x + Aiy -- #i) + #i -- AiY)sY t = (x + Aiy - #i)q(x, y) + r(y), 
s,t>~O 

where q(x, y) E Fix,  y], and r(y) = hB(#i -- Aiy, y) has degree not greater than  

deg hB. 
Now assume that  k+~i < IAl+lBI-deg P. We want to deduce a contradiction. 

Set 

Ao = {a e A: (#i - a)/Ai • B}. 

Obviously IAol = IAI - ~'i and gs( (# i  -- a)/Ai) • 0 for any a C Ao. If  a E Ao, 

then 

g B ( ~  a ) h B ( a , # i - - a ~  = f ( a , # i - - a ~ - - g A ( a ) h A ( a , # i - - a ~  = 0  
Ai ] Ai ] Ai ] 

and hence 

r = h .  ta,-- i ) = o .  

Since d e g r  ~ d e g f  - deggB < IAI - . ,  - -  IA01, we  must have r(y) = 0, i.e., 

hB(x, y) is divisible by x + Aiy - #i. Recall that  there are a0 E A and b0 C B 
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such that  P(a0, b0) r 0 and ao+Aibo = #i. Since hB(ao, b0) = 0, the polynomial 
P(a0, k y) 1-[j=l(ao+ ) , j y -# j )  = f(ao, y) = gB(y)hB(aO, y)is  divisible by (y-bo) ~. 
As ao+.kjbo ~ #j for any j ~ i, we must have y-bo  I P(ao, y), which contradicts 

the fact that  P(ao, bo) ~ O. I 

3. P r o o f s  o f  T h e o r e m s  1 .1-1 .2  

Proof of Theorem 1.1: Let P l , - . . , # k  be all the distinct elements of C. 

Applying Lemma 2.1 with ),1 . . . . .  ~k = 1, we find that  

[el + minuA,B(C) ~ [A[ + [ B [ -  d e g P  
c E C  

which is equivalent to (1.6). I 

Proof of Theorem 1.2: Without loss of generality, we can assume that G is 

finitely generated, and furthermore that  G is a subgroup of the multiplicative 

group of the field of complex numbers (see the proof of Theorem 1.1 of [Su2]); 

thus, C is the set 

{ab: a E A, b E B, and am'b -m ~ di for all i = l , . . . ,  l}. 

Let -A1, . . . , - - )~k be all the distinct elements of C, and set 

l 

P(x ,y )  = H ( x m ' y  TM - di). 
i = l  

Then, for each j E {1 , . . . ,  k}, there are a E A and b E B such that  a+),jb -1 = 0 
and P(a,b -1) ~ O. If a E A, b E B and P(a,b -1) ~ O, then there is a unique 

j E {1 , . . . ,  k} such that  )~j = -ab (i.e., a + )~jb -1 = 0). Applying Lemma 2.1 

to the sets A and B -1 = {b-l: b E B} with #1 . . . . .  #k ---- 0, we obtain that  

k + mAn I{(a, b) E A • B: a + )ub -1 = 0}] ~ IAI + IB-1I - degP. 
l ~ j ~ k  

Therefore 
1 

ICI + mini{(a,b ) E A • B: ab = c}[ >/IAI + I B I -  E ( m i  + h i )  
cEC 

i=1 

as desired. I 
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